(© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

This is the author manuscript, before publisher editing. Use the identifiers below to access the published
version.

Digital Object Identifier: 10.1109/IPDPSW.2014.50

URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6969413

Deterministic Synchronization of Multi-Threaded Programs with Operational
Transformation

Christopher Boelmann, Lorenz Schwittmann, Torben Weis
Distributed Systems Group
University of Duisburg-Essen
Duisburg, Germany
Email: firstname.lastname @uni-due.de

Abstract—Today’s mainstream programming language con-
cepts originate from a time when processes were executed in a
single thread and the outcome of computation was determin-
istic. To deal with multi-threaded execution synchronization
mechanisms have to be used to restrict parallel execution to
a point where the program produces correct results for all
possible interleaving executions. This is constantly leading to
deadlocks and race conditions, i.e. undesired non-deterministic
behavior.

In this paper, we propose a new set of synchronization
primitives, Spawn and Merge, that yield deterministic pro-
gram execution for multi-threaded programs. This means that
there are no race conditions when using this synchronization
technique and deadlocks can be avoided right away. Concur-
rent access to data structures is resolved using operational
transformation. Using two example scenarios we show how
these synchronization primitives can be used and that they
are equivalent to semaphores.

Furthermore, we evaluate our framework by implementing
a network simulator. We show that despite a constant overhead,
the performance is comparable to using standard synchroniza-
tion primitives while yielding deterministic results.

Keywords-Deterministic Synchronization; Parallel program-
ming models; Spawn and Merge; Operational Transformation

I. INTRODUCTION

Multi-threaded programming has always been difficult
using imperative programming languages, because different
threads worked on the same set of data structures. The
annotation of classes or methods with a synchronized
keyword (Java), or a lock statement (C#) has reduced
possible error sources, but has by no means solved the
problems of multi-threaded programming. There is little tool
support available to prove that such a program is free of race
conditions. Extensive testing can only show that on today’s
hardware (i.e. with 2 to 8 CPU cores) a program is most
likely fine. Thus, we believe that locking is a cumbersome
extension to imperative programming languages that has
been introduced to enable multi-threaded programming with
old-style single-threaded programming languages.

In this paper we present our approach to write programs
in a way that the result of a concurrent program is always
deterministic, i.e. there is a guarantee that concurrent pro-

grams always deliver the exact same results, regardless of
the number of cores they are executed on. Like Brocchino
et. al. [1], who proposed the same philosophical approach,
we call a parallel program deterministic, if every execution
of the program produces the same results and there is
no non-determinism caused by concurrent code execution'.
Especially for enterprise applications results have to be
reproducible and therefore determinism is important. But
even for applications where determinism is not a requirement
it has the potential to significantly simplify debugging: A
bug will not appear only in some executions of a program.
This also allows to achieve a higher confidence in unit tests
since it is impossible to miss an erroneous schedule.
However, when user interfaces or I/O with remote com-
puters is required, there is inherent non-determinism caused
by the non-deterministic program input. Thus, we allow the
programmer to explicitly introduce non-determinism where
required. This is the exact opposite to the current approach
where non-determinism is the default and the programmer
has to work hard to introduce determinism where required.
To achieve determinism despite parallel program execu-
tion we devised two synchronization primitives Spawn and
Merge. Spawn can be compared to the UNIX system call
fork, i.e. it spawns a new task? that can be executed in
parallel to its parent task. A newly spawned task gets a
copy of the data it is supposed to work on. This copy-
ing may become expensive. However, clever copy-on-write
techniques can be used to mitigate this problem to some
degree. Once spawned, the tasks can execute in parallel
using their local data copies without any synchronization,
i.e. no performance is lost because of lock contention and
race conditions are impossible. Depending on the amount of
locking avoided, this will make up for the cost of initial/on-
write copying of data. At this point we want to emphasize,
that the optimization goal of our work is to build correct

'Non-determinism resulting from calling non-deterministic functions
(e.g. Random ()) is not tackled by our approach.

2We use the term fask instead of thread, because a task encapsulates ad-
ditional information, e.g. the data structure copies. There is not necessarily
a one-to-one mapping between threads and tasks, since tasks may also be
scheduled to be executed on a pool of threads.

concurrent programs and not to squeeze the last few percent
of performance out of a multi-core CPU. However, in section
IIT we show that despite a constant overhead the performance
of our framework is comparable to a regular implementation
using standard synchronization primitives.

Eventually, the parent waits for its children to finish
and it merges their results with its own. In UNIX, there
is no Merge counterpart to fork. This is because the
operating system knows how to copy memory, but it cannot
know how to merge the divergent copies created by the
child processes, because this is application specific. When
the tasks are finished, each task may have produced its
own version of the data structure. To merge these together
we use operational transformation [2] which means that
each task has to record the operations applied to its data
structures. For example, a list records operations of the form
ins (0,0bj) or del (1). Merging takes the concurrent
operations and transforms them into a deterministic non-
concurrent sequence of operations. It takes some experience
to fully understand how operational transformation based
merging works. But in the end, we are able to write deter-
ministic programs which are guaranteed to be free of internal
deadlocks and free of race conditions as we will show in
section IV. We believe our approach is especially useful
in cases where each task primarily performs computations
and/or network I/O but in the end changes only small parts
of a shared data structure. This is the case for example in
scalable web application, distributed enterprise software, and
emulation of large networks.

The paper is organized as follows: In section II we present
Spawn and Merge, which enable deterministic execution of
concurrent programs by utilizing operational transformation.
Furthermore, we provide the reader with two examples
for their usage: a simple server software and a simple
simulation software. Afterwards, we evaluate our framework
to show that performance is comparable to using conven-
tional synchronization primitives. In section IV we show
that the expressive power of our approach is equivalent to
using semaphores and analyze it with respect to deadlocks.
Finally, we summarize and compare related approaches for
synchronizing parallel execution of concurrent programs and
the problems they address.

II. SPAWN AND MERGE

To illustrate and motivate our approach to thread synchro-
nization, we need to recapitulate how parallelism has been
approached before multi-threading became commonplace.
On UNIX programmers had to launch multiple processes
using fork to enable parallel execution of a program. Here
it is important to emphasize the difference between parallel
and concurrent execution. The execution of a program is
concurrent, if multiple commands may be executed at the
same time. Parallel program execution means that concurrent
parts of a program are executed on multiple CPU cores

at the same time. Each forked child process had its own
dedicated memory which was initially a copy of the par-
ent’s memory. This made race conditions impossible due
to concurrent memory access, since by default memory was
not shared. This yielded deterministic program execution for
each process.

In our approach an executing program consists of a set
of tasks that form a task hierarchy much like processes in
UNIX form a process hierarchy. A task is not completed
unless all its children have completed and have been merged
with their parent. A task can create a new child task using
Spawn, which is somewhat comparable to fork, because
the child task receives a copy of some of its parent’s data.
The difference between tasks and processes is that tasks are
much more lightweight and are therefore cheap to create and
to delete. When a child task has completed, the parent must
eventually merge back its results with its own data set using
Merge.

To achieve determinism, the merging happens in a deter-
ministic order, i.e. the parent task (which is deterministic)
states in which order it wants to merge its child tasks.
In contrast, allowing the merge to happen on a first-to-
complete basis (i.e. first child task to complete merges
first) can be used to introduce non-determinism explicitly
in the system. So far it should be clear that the merge
step is essential to our approach. Merging results from two
concurrent computations is complex and requires switching
from a data structure centric view to an operation-centric
view.

A. Operations

To motivate the operation-centric view we turn to an in-
teresting problem of concurrency: how to formally describe
the result of a concurrent execution. Imagine two functions
f and g that modify a list. For this purpose they take a
reference to a list as argument and modify it. Furthermore,
a function h executes these functions in parallel and passes
both functions a reference to list a as an argument, i.e.
both functions can concurrently modify the list a. We write
f(a) — ay to describe that f modifies a which in the
end becomes ay, but only if no other task modified a
concurrently.

fla) = ay (D
g(a) = a4)
h(a) == f(a)llg(a) = ap, 3z : z(ay,ay) — ap 3)

Here, in equations (1) to (3), a, ay, aq, ap are all lists. The
difficulty is to deterministically express the result of h(a).
Due to the concurrent access to a and the resulting non-
determinism, there is in general no deterministic function x
that could express h(a) in terms of the results that f and g
would have produced on their own.

Our approach is to focus on the operations generated by
f and g rather than looking at ay and a,. We assume that
a function computes a list of operations that can be applied
to its argument.

fa) = opsy,opsg(a) = af)

g(a) = opsg, opsy(a) = aq4 5)

h(a) := f(a)|lg(a) — (opsy, opsg) (©6)
merge(opsy,opsy) — ops, @)
opsp(a) = ay, 8)

Here the result of h is deterministic since it does not
depend on any interleaving of f and g and it is simply a tuple
consisting of the results of f and g. The merge function
serializes these operations using operational transformation.
This produces a new sequence of operations opsy, that can be
applied to a to obtain the result aj;, of computing h(a). The
function merge is a complex second order function, since it
reasons about functions, but nevertheless we obtain a fully
deterministic description of what it means to execute two
functions in parallel. Note that in general merge(x,y) #
merge(y, z). Thus it matters in which order the results are
merged.

This example exhibits the very basic idea of our approach.
Spawn copies a so that f(a) and g(a) can be computed
concurrently while Merge is a means to compute the merged
result using second order logic.

B. Operational Transformation

To merge concurrent operations into a non-concurrent
sequence of operations (i.e. to serialize the operations)
we use a technique called operational transformation that
has been first introduced by Ellis and Gibbs in 1989 [2].
Operational transformation has been extensively studied
([3], 41, [5]) and literature shows that a merge based on
operational transformation can be realized for many different
data structures, including strings, formatted text, lists and
trees. In contrast to other serialization techniques, e.g. used
by transactional databases, there are no aborts in operational
transformation and merging always succeeds.

Operational transformation originated from research in the
fields of computer-supported collaborative work (CSCW)
and collaborative editing. The idea is that all participants
(e.g. concurrent editors of a document) work on local sets
of data and only operations performed on these data sets
are exchanged. An operational transformation system can be
divided into two layers, the transformation control algorithm
and the transformation functions [2]. The transformation
control algorithm decides, which transformation function has
to be applied to which set of concurrent operations. The
transformation functions on the other hand are used to trans-
form concurrent operations. If the transformation function
and the transformation control algorithm are correct, the

Process A Process B
oo | o |
del(2) ins (0,d)
[ab | [d,a,b,c]
ins (0, d) del(2)

[d,a,b | [d,a,c |
Figure 1. Without Operational Transformation

Process A Process B
| |
l a,b,c ‘ l a,b,c ‘
del (2) ins (0,d)
l a,b ‘ l d,a,b,c ‘
ins (0,d) del (2)
d,a,b ¢OT
del (3)
[dab |

Figure 2. With Operational Transformation

local data converges against an equal state for every site,
even though each site applies the operations in a different
order.

For example we assume a list [a, b,] that can be modified
by two concurrent processes A and B. Let us assume
that process A intends to delete the element ¢ at index 2
(the list index starts at 0), which results in an operation
opa = del(2). At the same time process B inserts a new
element d at the beginning of the list (i.e. at index 0),
resulting in an operation opp = ins(0,d). Both processes
directly apply their own operation (op4 and opp) to their
own local list. Later on they receive the operation sent by
the other process. Applying the received operations without
operational transformation would yield different lists for
processes A and B (namely [d,a,b] for process A and
[d, a,] for process B) as shown in figure 1. This is because
after process B inserted the element d, the index of the
element that process A intended to delete shifted from 2 to 3.
The operational transformation algorithm would thus modify
the index of the delete operation in op4, to preserve the
intention of process A. If process B applies the transformed
operation op4 with index 3, both processes result in the
same list [d, a, b] as shown in figure 2.

C. Spawn

Spawn creates a new child task and copies a set of data
structures to work on. Thus we can think of spawning
like calling a function where all arguments are passed by
value (although an efficient implementation is more sophis-
ticated). The spawned function is executed concurrently.
Hence, Spawn immediately returns a handle to the new
child task. Spawn accepts any type of parameter. However,
it can only perform a Merge on data structures for which
the compiler/runtime knows how to copy and merge them.
Since defining operational transformation algorithms for data
structures is a non-trivial task we intend to provide a set of
commonly used mergeable data structures as a library, e.g.
mergeable strings, lists and trees. Furthermore, programmers
can use an interface to implement new mergeable data
structures that work with our system. However, writing
custom mergeable data structures should not be the common
case. The following code snippet (for brevity reasons written
in a GO-like pseudo-language) in listing 1 shows how Spawn
and Merge are used:

var mutex sync.Mutex
var wait sync.Mutex
func f (1 List) {
mutex.Lock ()
defer mutex.Unlock ()
defer wait.Unlock ()
1.Append (5)
}
list := NewList (1,2, 3)
wait.Lock ()
go f(list)
// DoSomething ()
mutex.Lock ()
list.Append (4)
mutex.Unlock ()
wait.Lock ()
Print (list)

func f (1 List) {

1.Append (5)
}
list := NewList (1,2, 3)
t := Spawn(f, list)

list.Append (4)
MergeAllFromSet (t)
Print (list)

Listing 1. Usage of Spawn and Merge

The function £ is to be executed by the child task.
The parent task creates a list 1ist with some values
and then spawns a child task to execute £ on a copy of
list using Spawn (£, 1ist). Now £ and the parent task
concurrently add a new value to 1ist. Since both work
on their own copy, there is no need for locking and no
race conditions appear. The function MergeAllFromSet
performs operational transformation to merge the operations
performed by both tasks into the final result [1, 2, 3,4, 5]. Let
us take a look at a comparable mutex-based implementation
(written in GO) that is shown in listing 2.

The mutex variable is used to protect 1ist while the
wait variable is used to block execution until the function £
completed. The defer statement used in function £ makes
sure that the locks are freed even if the Append function
panics, for example because the maximum list size has been
reached. It is obvious that the mutex-based version is much
more verbose and it is not trivial to judge its correctness.

Furthermore, the mutex-based version is not even de-
terministic. When the GO scheduler uses only one thread
for computations, the result is indeed always [1,2,3,4, 5],
because the child is always executed after the parent is
blocked acquiring a lock. When the scheduler has more

Listing 2. Mutex-based example

than one thread at its disposal then the two Append
functions could be executed concurrently. Most of the time
the function £ is last because it takes some time to launch a
new go-routine via go f (1ist). However, if we uncom-
ment DoSomething () then the result can be [1,2, 3,5, 4],
depending on how much time the DoSomething function
consumes. This does not only show the obvious fact that the
mutex-based version is non-deterministic. It also highlights
how difficult it is to catch these issues with testing. In
contrast the Spawn and Merge solution is shorter and always
deterministic.

D. Merge

The Merge function utilizes logic implemented by the data
structures to merge the results of concurrent execution via
operational transformation. Merge comes in four different
flavors:

o MergeAll waits for all child tasks to complete and
merges them in a deterministic order, i.e. in the order
of their creation

o MergeAllFromSet waits for all child tasks passed as
argument to this variadic function and merges them
deterministically in the order of the argument list

o MergeAny waits for the first child task to complete and
merges it which introduces non-determinism

o MergeAnyFromSet waits for the first task of a given set
of children to complete and merges it (also introducing
non-determinism)

MergeAny is useful when implementing distributed sys-
tems which have non-determinism because of network delay
or non-deterministic clients. For example a server can spawn
a new task to handle incoming requests. Using MergeAny
it will merge completed tasks on a first-completed-first-
merged basis. MergeAnyFromSet waits for any child in a
set. So MergeAny is just a special case of MergeAnyFromSet.
Whenever a task that still has running child tasks finishes

MergeAll is called implicitly. The MergeAllFromSet function
is useful when a task has a set of child tasks running and
wants to wait and merge a subset of them.

In addition, a condition function can be passed to Merge
functions to validate post-conditions. This way a task can
modify its data structure copies and check the conditions
on the computed results before merging. Whenever the
validation fails, the Merge will not be performed (i.e. any
changes of the child task will be omitted). This is essentially
a rollback mechanism realized by the runtime system. The
concept is close to the idea of transactional memory [6],
where code regions are grouped into transactions, that will
either be executed completely or not at all. However, when
two threads using transactional memory write the same
cache line, at least one transaction is rolled back. In our
framework in contrast there is no rolling back if two tasks
write the same data at the same time due to our use of
operational transformation.

E. Sync and Clone

In this chapter we introduce two new constructs that do
not extend the expressiveness of our synchronization system,
but make the code more readable.

One problem of the Spawn and Merge approach is that
tasks only merge after completion. This renders the creation
of long running tasks (e.g. tasks handling a TCP connection)
that influence data structures of the parent inconvenient to
achieve. However, this is often a desired behavior, e.g. that
merging should happen whenever a request is handled and
not when the TCP connection has been closed. An ugly
solution is for the child task to complete whenever a part
of its responsibility is completed (e.g. handle one incoming
TCP request) and merge with its parent. The parent task
must then check after merging whether the task has to fulfill
further duties, e.g. if the TCP-connection is still open, and
spawn a new child task to handle this.

To simplify such scenarios, we offer the Sync function.
When a child calls Sync () it blocks and waits until the
parent wishes to merge with it. After the parent finished
merging, it creates a new fresh copy of the parent’s data
structures and continues execution. Thus calling Sync is
equivalent to completing the task and spawning a new one
right after Merge is completed. Sync does therefore not
extend the expressiveness of our system but it yields more
readable code. Furthermore, it allows a child task to handle
the case that a user defined Merge with its parent fails (as
seen in listing 3).

Another practical problem is that it is implementation-
wise difficult for a task to execute two blocking operations
at once, e.g. MergeAny and socket .Accept. To execute
both operations, the root task can spawn a new child task that
executes the blocking socket .Accept function, while
the root task itself blocks by calling MergeAny in an
infinite loop. However, when the the child task accepting

incoming connections spawns new children of its own, these
are grandchildren of the root task and hence the root task
cannot merge with them. The ugly solution is that the child
task, that is accepting connections, completes when it has
accepted a new incoming TCP-connection. The root task
notices this when it merges with this child and can now
spawn a new child to handle the established connection and
spawn a second child to accept further connections.

Since this is a recurring pattern in practice when dealing
with blocking I/O, we allow a child task to clone itself using
the Clone function. Thus, it creates a new sibling task to
e.g. handle a new TCP-connection. This way the root task
can merge with the cloned task using MergeAny and the
problem is solved, as shown in the server software example
following the next section.

E Abort

A task can willingly or unwillingly fail to complete.
Exceptions within a task can be caught and error flags in
the task can be set to notify the parent task of the error.
Exceptions can occur if they are thrown by the task to
abort itself or by the runtime if e.g. an index is out of
range. When the parent merges an aborted task no data is
changed. The copies on which the aborted task worked are
simply dismissed. Furthermore, a parent can mark a task
as being externally aborted. This is useful because a parent
must merge with all its children eventually and this flag
allows a parent to state that it does not want to accept
the changes computed by this child task anymore. Abort
does not force the task to stop working immediately, since
most operating systems do not handle a forceful thread
termination gracefully.

G. Example 1: Server Software

To further demonstrate the usage and simplicity of Spawn
and Merge we show how to realize two example scenarios in
the following sections. First, listing 3 shows code to realize
a simple server software. When implementing a TCP-based
server, the straightforward approach is to create a set of
global data structures in the root task and then wait for
incoming TCP connections. For each new TCP connection,
the root task spawns a new child task that handles the
connection. The child task completes when the connection
is closed. Furthermore, the root task merges children non-
deterministically using MergeAny.

In this example, a child task is created that accepts
incoming TCP connections in the accept function. When
accept has been spawned, the data variable has its initial
value. When conn is spawned for a new connection, it is
spawned as a clone of the accept task. Thus, it inherits the
same initial value of data from its sibling. Since data
will most likely be outdated, the conn task first retrieves
an up to date version of data from its parent by calling
Sync (). Afterwards the conn task will process incoming

func accept (data) {
for {
socket := tcp.accept ()
Clone (conn, socket, data)
}
}
func conn (socket, data) {
defer socket.Close()

Sync ()
for {
req, err := read(socket)
if (err != nil) {
return

}
reg.doWork (data)
err := Sync()
if (err !'= nil) {
write (socket, err)
panic (err)
}
}
}
data := .
Spawn (accept, data)
for {
MergeAny ()
}

func host (hostID, queues) {

for {
Sync ()
if (queues[hostID].isEmpty()) {
continue
}
m_received := queues[hostID] .pop ()

m_send, destination :=
processMessage (m_received)
queues [destination] .append (m_send)

}

messageQueues := MergeableQueue[n]
InitMessages (messageQueues)
for (i := 0; 1 < n; ++1i){
Spawn (host, 1, messageQueues)
}
for {
MergeAll ()
}

Listing 3. Server Software realized using Spawn and Merge

requests and tries to merge with its parent via Sync (). If
this fails, it sends an error message on the socket, closes it
and aborts.

H. Example 2: Simulation Software

As a second example we chose a network simulation
software, that has a special requirement for correct and
deterministic results. In this simplified scenario a network
of individual hosts, that communicate by message passing,
is simulated. Each host receives a message, calculates the
next recipient, and forwards the message accordingly. This
simulation is inherently prone to race conditions when using
common synchronization primitives: if two hosts send a
message to the same recipient the order of processing is
timing dependent. The basic code using Spawn and Merge
to simulate a network of n hosts is shown in listing 4.

In this example a task is spawned for each simulated
host. The hosts receive an identifier as well as a copy of
the global messageQueues that is initialized with some
starting messages.

Each host function is executed in parallel and contains a
loop that determines the host behavior. First, the host updates
its data structures against the parent data structures using
Sync to ensure that his data is up to date. If its input mes-
sage queue is not empty it processes the received message
(i.e. m_received) to determine the new message to send
and the destination host (i.e. m_send and destination).
Finally, the message to send is stored in the message queue

Listing 4. Simulation Software realized using Spawn and Merge

of the destination host. The next loop iteration starts with
Sync, which causes the own changes to be merged into
the parents data structures. This also updates the local data
structures.

This example shows how to realize deterministic and
correct parallel programs using Spawn and Merge. The
determinism is enforced by the use of MergeAll that
deterministically merges all tasks in the order of their cre-
ation. The use of operational transformation when merging
furthermore serializes the concurrent operations of tasks on
the data structures.

III. EVALUATION

In this section we evaluate an implementation of the
example scenario described in section II-H, using a proof
of concept implementation of our framework. To create
some unpredictable processing load on hosts the destination
address is derived from the message payload using crypto-
graphic operations (i.e. SHA-I hashing).

To be able to compare the performance of our framework
we also created a implementation using threads and con-
ventional synchronization primitives. In this implementation
each host is represented by a thread with an incoming
queue. The thread performs a blocking read on its queue
until a message is received. As soon as a message was
read the thread performs the SHA-1 calculations and pushes
the message in the incoming queue of the destination host.
Both implementations were created using C++11 and GCC
version 4.8.1 and measured on an i7-3520M.

The load ! on each host is controlled by adjusting the
number of cryptographic hash operations per message (i.e.
hash iterations). If | is low, a larger fraction of the simulation
will be spent on queue operations. Thus, we measured the

16000
P
< 14000 - , F A
© L
S 12000 |- , s i
o Z
b R
= 10000 - , A 1
3 A
o 8000 | , A .
£ Lz
S =

6000 - , P ; » i
o 27
B 4000 - g 4
> v//:/' Conventional (non-determ.) ———
£ L~ Conventional (determ.) - - - -
» 2000 + S : Spawn Merge (non-determ.) — - —--- 7

i/ Spawn Merge (determ.) —-—-—

O | L | L

0 2000 4000 6000 8000
Host Workload (SHA-1 iterations)

10000

Figure 3. Evaluation results

performances of four test setups depending on the host
workload [.

All test setups used a base of 20 simulated hosts. Initially
there are 100 messages distributed over the simulated net-
work, each with a time to live (TTL) of 100 hops. The first
two test setups are conventional implementations, one with a
non-deterministic simulation (i.e. calculating the destination
host as stated introducing non-determinism at the destina-
tion host’s incoming queue) and one with a deterministic
simulation. The determinism here is achieved by sending
messages only to the node with the next higher id, since the
concurrency caused by sending two messages to the same
host is no longer present. The other two setups used our
Spawn and Merge framework, simulating the same behavior
as the conventional implementations. However, note that
using Spawn and Merge also the ‘non-deterministic’ test
setup becomes deterministic and yields the same results in
every run.

We run every test setup several times with up to 10000
hash iterations for the host workload [. The average measure-
ment results are shown in Figure 3. The execution time of
the conventional implementations rises proportionally with
the number of hash operations ! with negligible performance
differences for deterministic and non-deterministic simula-
tions. The execution time using Spawn and Merge rises
linearly alongside the conventional implementation perfor-
mance, while the deterministic simulation is slightly faster
than the ‘non-deterministic’ version. This small performance
gap (of about 1% to 4%) results from multiple messages sent
to one host, that are processed in consecutive simulation
cycles.

However, there is a constant overhead of about 400
milliseconds per run. This is because on Spawn the initial
data structures have to be copied for every spawned task
(i.e. 20 tasks with 20 queues each which have to be copied).
The measurement results show that the overall effect of the

overhead decreases with increasing host workload {. Namely,
while for 1000 iterations the overhead is about 38% (since
the conventional approach finishes in about 1.5 seconds the
overhead of about 400 milliseconds is comparably high) it
decreases to about 7% for 10000 hash operations. Note how-
ever, that we used an unoptimized proof of concept imple-
mentation of our framework. The overhead may be further
decreased by using sophisticated copy-on-write mechanisms,
faster merging algorithms and other optimization techniques.
Furthermore, the effect of lock contention avoided using
Spawn and Merge cannot be derived from the measurements
of the unoptimized framework, yet.

IV. ANALYSIS

In this section we show that for synchronization the Spawn
and Merge primitives have equivalent expressive power to
the usage of semaphores, that have been introduced by
Dijkstra in 1965 [7]. This way we prove that the same
concurrent execution, as in a program using semaphores,
can be achieved using our system. Furthermore, we analyze
our proposed system to show that Spawn and Merge based
systems are by nature deadlock-free.

A. Equivalence to Semaphores

We assume that a semaphore-based system does not
concurrently access the same memory bytes without locking
them via a semaphore. This is reasonable, since everything
else is most likely a bug anyway that induces the kind of
non-determinism that we try to avoid in the first place.
Furthermore, we assume that the semaphore-based system
does not end up in a deadlock.

To prove that Spawn and Merge are equivalent to
semaphores we will model a semaphore using only Spawn
and Merge. We model a semaphore as a list of integers L.
The first element is the value of the semaphore, all following
numbers are the IDs of tasks waiting at this semaphore.
When a child task wants to acquire the semaphore it appends
itself to the list L and calls Sync () and then Sync ()
again. The first Sync wakes up the parent task that is
merging with any child of a set S of children, using
MergeAnyFromSet (S). This set S covers all children
initially. To match the semaphore-based system, we create
one child for any thread used by the semaphore-based
system. When MergeAnyFromSet (S) returns, the parent
checks L to see if it can grant a waiting child task access to
the semaphore. If the semaphore value is already zero, then
the child is removed from S. Hence, the parent task does
not merge with the waiting child task anymore and therefore
the child is blocked in the second Sync call. Otherwise, the
semaphore value is decreased, the waiting child is removed
from L and added to S. Hence, the second Sync will
proceed because the parent merges with this child again.
Now the child has successfully acquired the semaphore.

To release a semaphore, a child adds its negative task ID
to L and calls Sync (). This wakes up the parent. When
the parent task returns from MergeAnyFromSet (S) it
checks for these negative task IDs. It removes them from L
and increases the semaphore value by one for each removed
negative ID. Then it checks whether other waiting child tasks
can now get access to the semaphore.

While this procedure is inefficient and cumbersome, it
shows that we can achieve the same parallel execution that
a semaphore-based system can realize. Due to the use of
MergeAnyFromSet we allowed non-determinism to creep
into our system, but this is necessary because semaphore-
based systems are non-deterministic, too. A programmer
should always use the deterministic Merge functions by de-
fault and resort to the non-deterministic ones if he explicitly
wants to have non-deterministic behavior, which is usually
the case in server-software or interactive applications.

B. Deadlocks

Using only Spawn and Merge it is impossible to create a
deadlock. A deadlock requires four conditions to hold [8],
one of them being a cyclic dependency. However, the task
hierarchy has a tree shape and the only possible waiting is
between a parent and a child task via Merge and Sync. Thus,
the only cyclic dependency possible is that a child waits for
its parent (only possible with Sync) and the parent waits for
the child (only possible with Merge). But in this case the
merge will happen and both are unblocked. Hence, cyclic
waiting conditions are impossible.

Following the equivalence to semaphore-based systems
shown in the previous section it is interesting to see how
the Spawn and Merge based system simulates a deadlocked
semaphore system. If all tasks are blocked, the set S (held by
the parent) is empty, because by definition all blocked chil-
dren are removed from S. Thus, the parent task will iterate
in an infinite loop calling MergeAnyFromSet (S) where
S is the empty set. This means that MergeAnyFromSet
will never block, because there is nothing it could wait for.
This reveals (to no surprise) that a Spawn and Merge based
system can still livelock, but this is true for all programming
languages that allow infinite loops and is nothing that
could be prevented by a synchronization system. However,
deadlocks are impossible to realize with Spawn and Merge.

V. RELATED WORK

Multi-threaded programming introduced many new dif-
ficulties which primarily relate to synchronization of con-
current processes, achieving of deterministic results and
a consistent view on data structures. In this section we
describe how these problems are addressed by different
approaches that have been proposed to cope with these
issues.

Deterministic Parallel Programming: The general idea
that parallel programming should be deterministic by default
and that non-determinism should only be introduced if
explicitly desired is not new has already been proposed by
Brocchino et al. [1] and realized in the Deterministic Parallel
Java (DPJ) project [9]. In DPJ the heap is partitioned into
hierarchical regions. These regions are used to differentiate
accesses to objects or object parts of the same object. Fur-
thermore, an effect system is created by annotating each task
with the regions that are accessed within the task. Based on
these regions combined with the effect system a type checker
is used to identify overlapping memory operations between
concurrent tasks that may introduce nondeterminism. Thus
nondeterminism cannot be introduced by accident.

Even though our Spawn and Merge framework follows the
same philosophical approach as DPJ the way determinism
is achieved differs completely. In DPJ conflicting memory
accesses are exposed by the compiler. However, this requires
the effect system that is built from the code annotations to
be correct. In contrast our approach uses operation trans-
formation to deterministically resolve conflicting writes and
does not depend on additional annotations.

Parallel Programming Runtime Systems: Cilk [10] is a
runtime system for multithreaded parallel programming. A
programmer writing a Cilk program has to expose parallel
executable code by spawning Cilk procedures using a spawn
keyword. Spawned procedures may be executed by the
runtime in parallel and return their computation results to
their parent. The sync keyword introduces a barrier method
stating that all spawned Cilk procedures have to return before
execution may proceed.

Even though our approach looks syntactically similar to
the Cilk approach due to the constructs spawn and sync,
the constructs have different meanings. Cilk assumes that
spawned procedures avoid conflicting data access. However,
there is no guarantee for determinism concerning the re-
sults of spawned procedures. In contrast, using Spawn and
Merge a programmer may explicitly choose determinism or
non-determinism by choosing one of the Merge functions.
Furthermore, our approach allows waiting for specific tasks
if desired instead of always blocking until all spawned
tasks completed. Finally, in our approach the Sync function
enables programmers to propagate intermediate results to the
parent task to update the parent data structures while the task
is still running.

Parallel Programming Frameworks: Parallel program-
ming frameworks provide an API to ease parallel pro-
gramming. Thereby they can expand general purpose pro-
gramming languages. The OpenMP API [11] for example
provides developers with compiler directives to specify
which code regions can be executed in parallel. This way
developers can e.g. declare a loop as feasible for parallel
execution while the runtime system will schedule single
loop iterations to different threads. However, OpenMP does

not guarantee determinism and the compiler cannot check
whether e.g. a parallel loop execution is really safe.

Locking Primitives: In general purpose programming
languages several techniques for handling parallel execution
of multi-threaded programs have become commonplace.
These techniques include semaphores, mutexes, and mon-
itors. They all share the same shortcoming: the first thread
arriving at a synchronization point gets access to the data
first. This introduces non-determinism into multi-threaded
programs, because even on the same hardware it is not deter-
ministic which thread will arrive at a synchronization point
first since it depends on many circumstances like scheduling
of threads, I/O performance or interrupts. Furthermore, these
constructs are negative by design, i.e. they state what must
not happen, for example there must not be two threads active
in a monitor [12] at the same time. This means that multi-
threaded programs yielding deterministic results in every
run are hard to achieve using these simple synchronization
primitives.

In contrast, our approach is to use positive constructs for
synchronization. Thus, a program specifies in which order
results of spawned tasks are merged into the parent’s data
structures, which results in a deterministic execution of a
concurrent program. In fact, we provide both solutions. It
is up the programmer to make an explicit choice for non-
determinism, if desired.

Message Passing: The idea of processes that commu-
nicate and synchronize by passing messages dates back to
the ‘Communicating Sequential Processes’ paper of Hoare
[13]. An example is the Message Passing Interface (MPI)
[14]. MPI provides an API for exchanging messages between
processes that may run on different computers and thus
is also applicable to distributed systems. Another example
is the programming language GO that reintroduced mes-
sage passing as a primary synchronization concept. In GO
tasks (called go-routines) communicate and synchronize by
message passing via channels. However, a system using
message passing may also contain races introducing non-
determinism.

Process Calculi: Process calculi deal with modeling
and reasoning about concurrent systems, i.e. they can be
used to describe and analyze their properties [15]. They
provide a high-level description of concurrent processes,
especially in terms of communication and synchronization,
using only a small number of primitives and operators. Fur-
thermore, process calculi allow the manipulation and anal-
ysis of a concurrent system description by using algebraic-
laws to show e.g. equivalences between processes using
equational reasoning.

In contrast to process calculi our approach does not try to
verify the correctness of a concurrent program using a the-
oretical model for describing process communications. The
operational transformation technique used in our proposed
approach ensures the correctness of the executed program

in terms of determinism and the absence of deadlocks and
race conditions by design.

Coordination Languages: Coordination languages are
used to specify protocols on how concurrent processes may
communicate and interact, i.e. on how to coordinate the
processes [16]. The coordination language Linda [17] for
example allows to extend a sequential language with several
primitives for inter-process communication that operate on
tuples, stored in a tuplespace in a logically global associative
memory. The idea is to treat the process coordination as
an orthogonal activity to process computation. This allows
coupling of processes on a data-level using the tuplespace.
However, coordination languages like Linda do not ensure
deterministic program execution by default.

Path Expressions [18] use a syntax that vaguely resembles
the idea of regular expressions. Where regular expressions
define the set of all allowed character sequences, path ex-
pressions describe the set of all allowed parallel invocations
of a set of functions. While powerful, path expressions
and regular expressions suffer from the same problem:
they are very concise, but for real-life problems which are
more complex than a typical consumer/producer example,
they become hardly readable. Furthermore, path expressions
do not deliver determinism. Just like locking they restrict
parallelism on function execution, but usually specify a
large set of possible actual execution paths which in turn
could each yield different results depending on the timing
of threads.

VI. CONCLUSION AND FURTHER WORK

In this paper we presented Spawn and Merge, two syn-
chronization primitives that yield deterministic program ex-
ecution of multi-threaded programs. While programs using
Spawn and Merge are deterministic by default it is still
possible to introduce non-determinism into a program if
desired. The Spawn function is used to create a new fask
that works on a local data copy to avoid the need for data
structure locking. It is combined with the Merge function, a
deterministic function to merge the results of the concurrent
task execution back into the data structures of the parent
task. The Merge function utilizes operational transformation
to deterministically serialize the concurrent operations per-
formed by tasks.

We demonstrated the ease of use of Spawn and Merge
by realizing a simple non-deterministic server software and
a simple simulation software that always yields correct
results. Furthermore, we evaluated an unoptimized proof
of concept implementation of Spawn and Merge to show
that the performance is comparable to using conventional
synchronization primitives (despite a constant overhead of
about 400 milliseconds per run, whose effect decreases with
increased task workload) while yielding deterministic results
by default. We finally proved that a Spawn and Merge
based system is equivalent to a system using semaphores for

synchronization in terms of concurrent program execution.
Furthermore, we have shown that systems using Spawn and
Merge are deadlock free. This way our technique enables an
easier programming of multi-threaded programs that can be
run at different kinds of many-core systems, like e.g. future
CPUs, the Parallella Board [19] or even supercomputers with
thousands of CPUs while always yielding the same result.

Next we will optimize our Spawn and Merge frame-
work using techniques like copy-on-write and more efficient
merge functions to decrease the overhead of using Spawn
and Merge compared to implementations using conventional
synchronization primitives. We will use these optimizations
to reason about the generality and scalability of our approach
for further interesting use cases like scientific computing.
Furthermore, we plan to apply the concept of Spawn and
Merge to distributed computing by using MPIL.

REFERENCES

[1] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir,
“Parallel programming must be deterministic by default,”
in Proceedings of the First USENIX Conference on Hot
Topics in Parallelism, ser. HotPar’09. Berkeley, CA, USA:
USENIX Association, 2009, pp. 4-4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855591.1855595

[2] C. A. Ellis and S. J. Gibbs, “Concurrency control
in groupware systems,” in Proceedings of the 1989
ACM SIGMOD international conference on Management
of data, ser. SIGMOD ’89. New York, NY, USA:

ACM, 1989, pp. 399-407. [Online]. Available: http:
/ldoi.acm.org/10.1145/67544.66963
[3] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen,

“Achieving convergence, causality preservation, and intention
preservation in real-time cooperative editing systems,” ACM
Trans. Comput.-Hum. Interact., vol. 5, no. 1, pp. 63-108,
Mar. 1998. [Online]. Available: http://doi.acm.org/10.1145/
274444.274447

[4

—_

C. lavinia Ignat and M. C. Norrie, “Customizable collabora-
tive editor relying on treeopt algorithm,” in In Proc. of the
European Conf. of Computer-supported Cooperative Work.
Kluwer Academic Publishers, 2003, pp. 315-334.

[5S] A. H. Davis, C. Sun, and J. Lu, “Generalizing operational
transformation to the standard general markup language,”
in Proceedings of the 2002 ACM conference on Computer
supported cooperative work, ser. CSCW ’02. New York,
NY, USA: ACM, 2002, pp. 58-67. [Online]. Available:
http://doi.acm.org/10.1145/587078.587088

[6

—_

M. Herlihy and J. E. B. Moss, “Transactional memory:
architectural support for lock-free data structures,” in
Proceedings of the 20th annual international symposium
on computer architecture, ser. ISCA °93. New York,
NY, USA: ACM, 1993, pp. 289-300. [Online]. Available:
http://doi.acm.org/10.1145/165123.165164

[7]1 E. W. Dijkstra, “Cooperating sequential processes, technical
report ewd-123,” Tech. Rep., 1965.

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

E. G. Coffman, M. Elphick, and A. Shoshani, “System
deadlocks,” ACM Comput. Surv., vol. 3, no. 2, pp. 67-78,
Jun. 1971. [Online]. Available: http://doi.acm.org/10.1145/
356586.356588

University of Illinois at Urbana-Champaign,
“Deterministic Parallel Java (DPJ) project,”
http://dpj.cs.uiuc.edu/DPJ/Home.html, 2014. [Online]. Avail-
able: http://dpj.cs.uiuc.edu/DPJ/Home.html

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou, “Cilk: An efficient
multithreaded runtime system,” SIGPLAN Not., vol. 30,

no. 8, pp. 207-216, Aug. 1995. [Online]. Available:
http://doi.acm.org/10.1145/209937.209958
OpenMP Architecture Review Board, “OpenMP Ap-

plication Program Interface,” http://www.openmp.org/mp-
documents/OpenMP4.0.0.pdf, 2014. [Online]. Available:
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

C. A. R. Hoare, “Monitors: an operating system structuring
concept,” Commun. ACM, vol. 17, no. 10, pp. 549-557,
Oct. 1974. [Online]. Available: http://doi.acm.org/10.1145/
355620.361161

——, “Communicating sequential processes,” Commun.
ACM, vol. 21, no. 8, pp. 666-677, Aug. 1978. [Online].
Available: http://doi.acm.org/10.1145/359576.359585
“Document for a standard message-passing interface,”
Knoxville, TN, USA, Tech. Rep., 1993.

B. C. Pierce, “Foundational calculi for programming lan-
guages,” in in the CRC Handbook of Computer Science and
Engineering. Available electronically, 1995.

D. Gelernter and N. Carriero, “Coordination languages and
their significance,” Commun. ACM, vol. 35, no. 2, pp.
97-107, Feb. 1992. [Online]. Available: http://doi.acm.org/
10.1145/129630.129635

S. Ahuja, N. Carriero, and D. Gelernter, “Linda and friends,”
Computer, vol. 19, no. 8, pp. 26-34, Aug. 1986. [Online].
Available: http://dx.doi.org/10.1109/MC.1986.1663305

R. H. Campbell and A. N. Habermann, “The specification of
process synchronization by path expressions,” in Operating
Systems, Proceedings of an International Symposium. Lon-
don, UK, UK: Springer-Verlag, 1974, pp. 89-102. [Online].
Available: http://dl.acm.org/citation.cfm?id=647641.733391

Adapteva, “Parallella Board,” http://www.parallella.org, 2014.
[Online]. Available: http://www.parallella.org

